Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Brain Commun ; 5(6): fcad326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107501

RESUMO

The neural correlates that help us understand the challenges that Parkinson's patients face when negotiating their environment remain under-researched. This deficit in knowledge reflects the methodological constraints of traditional neuroimaging techniques, which include the need to remain still. As a result, much of our understanding of motor disorders is still based on animal models. Daily life challenges such as tripping and falling over obstacles represent one of the main causes of hospitalization for individuals with Parkinson's disease. Here, we report the neural correlates of naturalistic ambulatory obstacle avoidance in Parkinson's disease patients using mobile EEG. We examined 14 medicated patients with Parkinson's disease and 17 neurotypical control participants. Brain activity was recorded while participants walked freely, and while they walked and adjusted their gait to step over expected obstacles (preset adjustment) or unexpected obstacles (online adjustment) displayed on the floor. EEG analysis revealed attenuated cortical activity in Parkinson's patients compared to neurotypical participants in theta (4-7 Hz) and beta (13-35 Hz) frequency bands. The theta power increase when planning an online adjustment to step over unexpected obstacles was reduced in Parkinson's patients compared to neurotypical participants, indicating impaired proactive cognitive control of walking that updates the online action plan when unexpected changes occur in the environment. Impaired action planning processes were further evident in Parkinson's disease patients' diminished beta power suppression when preparing motor adaptation to step over obstacles, regardless of the expectation manipulation, compared to when walking freely. In addition, deficits in reactive control mechanisms in Parkinson's disease compared to neurotypical participants were evident from an attenuated beta rebound signal after crossing an obstacle. Reduced modulation in the theta frequency band in the resetting phase across conditions also suggests a deficit in the evaluation of action outcomes in Parkinson's disease. Taken together, the neural markers of cognitive control of walking observed in Parkinson's disease reveal a pervasive deficit of motor-cognitive control, involving impairments in the proactive and reactive strategies used to avoid obstacles while walking. As such, this study identified neural markers of the motor deficits in Parkinson's disease and revealed patients' difficulties in adapting movements both before and after avoiding obstacles in their path.

2.
Imaging Neurosci (Camb) ; 1: 1-14, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37719836

RESUMO

Statistical power in cognitive neuroimaging experiments is often very low. Low sample size can reduce the likelihood of detecting real effects (false negatives) and increase the risk of detecting non-existing effects by chance (false positives). Here, we document our experience of leveraging a relatively unexplored method of collecting a large sample size for simple electroencephalography (EEG) studies: by recording EEG in the community during public engagement and outreach events. We collected data from 346 participants (189 females, age range 6-76 years) over 6 days, totalling 29 hours, at local science festivals. Alpha activity (6-15 Hz) was filtered from 30 seconds of signal, recorded from a single electrode placed between the occipital midline (Oz) and inion (Iz) while the participants rested with their eyes closed. A total of 289 good-quality datasets were obtained. Using this community-based approach, we were able to replicate controlled, lab-based findings: individual alpha frequency (IAF) increased during childhood, reaching a peak frequency of 10.28 Hz at 28.1 years old, and slowed again in middle and older age. Total alpha power decreased linearly, but the aperiodic-adjusted alpha power did not change over the lifespan. Aperiodic slopes and intercepts were highest in the youngest participants. There were no associations between these EEG indexes and self-reported fatigue, measured by the Multidimensional Fatigue Inventory. Finally, we present a set of important considerations for researchers who wish to collect EEG data within public engagement and outreach environments.

3.
Laterality ; 28(1): 48-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416485

RESUMO

Meta-analyses have shown subtle, group-level asymmetries of spatial attention in adults favouring the left hemispace (pseudoneglect). However, no meta-analysis has synthesized data on children. We performed a random-effects meta-analysis of spatial biases in children aged ≤16 years. Databases (PsycINFO, Web of Science & Scopus) and pre-print servers (bioRxiv, medRxiv & PsyArXiv) were searched for studies involving typically developing children with a mean age of ≤16, who were tested using line bisection. Thirty-three datasets, from 31 studies, involving 2101 children, were included. No bias was identified overall, but there was a small leftward bias in a subgroup where all children were aged ≤16. Moderator analysis found symmetrical neglect, with right-handed actions resulting in right-biased bisections, and left-handed actions in left-biased bisections. Bisections were more leftward in studies with a higher percentage of boys relative to girls. Mean age, hand preference, and control group status did not moderate biases, and there was no difference between children aged ≤7 and ≥7 years, although the number of studies in each moderator analysis was small. There was no evidence of small study bias. We conclude that pseudoneglect may be present in children but is dependent on individual characteristics (sex) and/or task demands (hand used).Registration: Open Science Framework (https://osf.io/n68fz/).


Assuntos
Lateralidade Funcional , Desempenho Psicomotor , Criança , Feminino , Humanos , Masculino , Atenção , Mãos , Percepção Espacial , Adolescente
4.
Neuropsychol Rev ; 32(2): 438-457, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890188

RESUMO

Young adults exhibit a small asymmetry of visuospatial attention that favours the left side of space relative to the right (pseudoneglect). However, it remains unclear whether this leftward bias is maintained, eliminated or shifted rightward in older age. Here we present two meta-analyses that aimed to identify whether adults aged ≥50 years old display a group-level spatial attention bias, as indexed by the line bisection and the landmark tasks. A total of 69 datasets from 65 studies, involving 1654 participants, were analysed. In the meta-analysis of the line bisection task (n = 63), no bias was identified for studies where the mean age was ≥50, but there was a clear leftward bias in a subset where all individual participants were aged ≥50. There was no moderating effect of the participant's age or sex, line length, line position, nor the presence of left or right cues. There was a small publication bias in favour of reporting rightward biases. Of note, biases were slightly more leftward in studies where participants had been recruited as part of a stand-alone older group, compared to studies where participants were recruited as controls for a clinical study. Similarly, no spatial bias was observed in the meta-analysis of the landmark task, although the number of studies included was small (n = 6). Overall, these results indicate that over 50s maintain a group-level leftward bias on the line bisection task, but more studies are needed to determine whether this bias can be modulated by stimulus- or state-dependent factors.


Assuntos
Lateralidade Funcional , Percepção Espacial , Idoso , Humanos , Pessoa de Meia-Idade , Desempenho Psicomotor , Análise e Desempenho de Tarefas , Adulto Jovem
5.
Neuropsychol Rehabil ; 32(5): 629-639, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33467990

RESUMO

It is clear already that in current and future years more people will suffer from stroke, whether related to COVID-19 or not, and given its prevalence, many more people's lives will be affected by neglect. Here we hope to have contributed to its possible amelioration with highlights of the latest thinking on neglect diagnosis, prevalence and treatment.


Assuntos
COVID-19 , Transtornos da Percepção , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Transtornos da Percepção/reabilitação , Acidente Vascular Cerebral/complicações
6.
Eur J Neurosci ; 54(12): 8106-8119, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33465827

RESUMO

The ability to safely negotiate the world on foot takes humans years to develop, reflecting the extensive cognitive demands associated with real-time planning and control of walking. Despite the importance of walking, methodological limitations mean that surprisingly little is known about the neural and cognitive processes that support ambulatory motor control. Here, we report mobile EEG data recorded from 32 healthy young adults during real-world ambulatory obstacle avoidance. Participants walked along a path while stepping over expected and unexpected obstacles projected on the floor, allowing us to capture the dynamic oscillatory response to changes in environmental demands. Compared to obstacle-free walking, time-frequency analysis of the EEG data revealed clear neural markers of proactive and reactive forms of movement control (occurring before and after crossing an obstacle), visible as increases in frontal theta and centro-parietal beta power respectively. Critically, the temporal profile of changes in frontal theta allowed us to arbitrate between early selection and late adaptation mechanisms of proactive control. Our data show that motor plans are updated as soon as an upcoming obstacle appears, rather than when the obstacle is reached. In addition, regardless of whether motor plans required updating, a clear beta rebound was present after obstacles were crossed, reflecting the resetting of the motor system. Overall, mobile EEG recorded during real-world walking provides novel insight into the cognitive and neural basis of dynamic motor control in humans, suggesting new routes to the monitoring and rehabilitation of motor disorders such as dyspraxia and Parkinson's disease.


Assuntos
Marcha , Doença de Parkinson , Adaptação Fisiológica , Eletroencefalografia , Marcha/fisiologia , Humanos , Caminhada/fisiologia , Adulto Jovem
7.
Neuropsychol Rehabil ; 31(8): 1163-1189, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32498606

RESUMO

Up to 80% of people who experience a right-hemisphere stroke suffer from hemispatial neglect. This syndrome is debilitating and impedes rehabilitation. We carried out a clinical feasibility trial of transcranial direct current stimulation (tDCS) and a behavioural rehabilitation programme, alone or in combination, in patients with neglect. Patients >4 weeks post right hemisphere stroke were randomized to 10 sessions of tDCS, 10 sessions of a behavioural intervention, combined intervention, or a control task. Primary outcomes were recruitment and retention rates, with secondary outcomes effect sizes on measures of neglect and quality of life, assessed directly after the interventions, and at 6 months follow up. Of 288 confirmed stroke cases referred (representing 7% of confirmed strokes), we randomized 8% (0.6% of stroke cases overall). The largest number of exclusions (91/288 (34%)) were due to medical comorbidities that prevented patients from undergoing 10 intervention sessions. We recruited 24 patients over 29 months, with 87% completing immediate post-intervention and 67% 6 month evaluations. We established poor feasibility of a clinical trial requiring repeated hospital-based tDCS within a UK hospital healthcare setting, either with or without behavioural training, over a sustained time period. Future trials should consider intensity, duration and location of tDCS neglect interventions.Trial registration: ClinicalTrials.gov identifier: NCT02401724.


Assuntos
Transtornos da Percepção , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Método Duplo-Cego , Estudos de Viabilidade , Humanos , Transtornos da Percepção/etiologia , Estudos Prospectivos , Qualidade de Vida
8.
Eur J Neurosci ; 53(5): 1592-1604, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098709

RESUMO

Studies using transcranial direct current stimulation (tDCS) typically incorporate a fade-in, short-stimulation, fade-out sham (placebo) protocol, which is assumed to be indistinct from a 10-30 min active protocol on the scalp. However, many studies report that participants can dissociate active stimulation from sham, even during low-intensity 1 mA currents. We recently identified differences in the perception of an active (10 min of 1 mA) and a sham (20 s of 1 mA) protocol that lasted for 5 min after the cessation of sham. In the present study we assessed whether delivery of a higher-intensity 2 mA current would exacerbate these differences. Two protocols were delivered to 32 adults in a double-blinded, within-subjects design (active: 10 min of 2 mA, and sham: 20 s of 2 mA), with the anode over the left primary motor cortex and the cathode on the right forehead. Participants were asked "Is the stimulation on?" and "How sure are you?" at 30 s intervals during and after stimulation. The differences between active and sham were more consistent and sustained during 2 mA than during 1 mA. We then quantified how well participants were able to track the presence and absence of stimulation (i.e. their sensitivity) during the experiment using cross-correlations. Current strength was a good classifier of sensitivity during active tDCS, but exhibited only moderate specificity during sham. The accuracy of the end-of-study guess was no better than chance at predicting sensitivity. Our results indicate that the traditional end-of-study guess poorly reflects the sensitivity of participants to stimulation, and may not be a valid method of assessing sham blinding.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Eletrodos , Humanos , Couro Cabeludo
9.
PLoS One ; 14(12): e0226424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869372

RESUMO

At present, there is a lack of systematic investigation into intra- and inter-task consistency effects in older adults, when investigating lateralised spatial attention. In young adults, spatial attention typically manifests itself in a processing advantage for the left side of space ("pseudoneglect"), whereas older adults have been reported to display no strongly lateralised bias, or a preference towards the right side. Building on our earlier study in young adults, we investigated older adults, aged between 60 to 86 years, on five commonly used spatial attention tasks (line bisection, landmark, grey and grating scales and lateralised visual detection). Results confirmed a stable test-retest reliability for each of the five spatial tasks across two testing days. However, contrary to our expectations of a consistent lack in bias or a rightward bias, two tasks elicited significant left spatial biases in our sample of older participants, in accordance with pseudoneglect (namely the line bisection and greyscales tasks), while the other three tasks (landmark, grating scales, and lateralised visual detection tasks) showed no significant biases to either side of space. This lack of inter-task correlations replicates recent findings in young adults. Comparing the two age groups revealed that only the landmark task was age sensitive, with a leftward bias in young adults and an eliminated bias in older adults. In view of these findings of no significant inter-task correlations, as well as the inconsistent directions of the observed spatial biases for the older adults across the five tested tasks, we argue that pseudoneglect is a multi-component phenomenon and highly task sensitive. Each task may engage slightly distinct neural mechanisms, likely to be impacted differently by age. This complicates generalisation and comparability of pseudoneglect effects across different tasks, age-groups and hence studies.


Assuntos
Envelhecimento/psicologia , Atenção/fisiologia , Envelhecimento Cognitivo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , Lateralidade Funcional , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estimulação Luminosa , Reprodutibilidade dos Testes
10.
Eur J Neurosci ; 50(8): 3380-3388, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228880

RESUMO

Studies using transcranial direct current stimulation (tDCS) typically compare an active protocol relative to a shorter sham (placebo) protocol. Both protocols are presumed to be perceptually identical on the scalp, and thus represent an effective method of delivering double-blinded experimental designs. However, participants often show above-chance accuracy when asked which condition involved active/sham retrospectively. We assessed the time course of sham-blinding during active and sham tDCS. We predicted that participants would be aware that the current is switched on for longer in the active versus sham protocol. Thirty-two adults were tested in a preregistered, double-blinded, within-subjects design. A forced-choice reaction time task was undertaken before, during and after active (10 min 1 mA) and sham (20 s 1 mA) tDCS. The anode was placed over the left primary motor cortex (C3) to target the right hand, and the cathode on the right forehead. Two probe questions were asked every 30 s: "Is the stimulation on?" and "How sure are you?". Distinct periods of non-overlapping confidence intervals were identified between conditions, totalling 5 min (57.1% of the total difference in stimulation time). These began immediately after sham ramp-down and lasted until the active protocol had ended. We therefore show a failure of placebo control during 1 mA tDCS. These results highlight the need to develop more effective methods of sham-blinding during transcranial electrical stimulation protocols, even when delivered at low-intensity current strengths.


Assuntos
Conscientização , Estimulação Transcraniana por Corrente Contínua , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Córtex Motor , Percepção , Fatores de Tempo , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
11.
Neuropsychol Rehabil ; 29(2): 251-272, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28116988

RESUMO

Hemispatial neglect is a severe cognitive condition frequently observed after a stroke, associated with unawareness of one side of space, disability and poor long-term outcome. Visuomotor feedback training (VFT) is a neglect rehabilitation technique that involves a simple, inexpensive and feasible training of grasping-to-lift rods at the centre. We compared the immediate and long-term effects of VFT vs. a control training when delivered in a home-based setting. Twenty participants were randomly allocated to an intervention (who received VFT) or a control group (n = 10 each). Training was delivered for two sessions by an experimenter and then patients self-administered it for 10 sessions over two weeks. Outcome measures included the Behavioural Inattention Test (BIT), line bisection, Balloons Test, Landmark task, room description task, subjective straight-ahead pointing task and the Stroke Impact Scale. The measures were obtained before, immediately after the training sessions and after four-months post-training. Significantly greater short and long-term improvements were obtained after VFT when compared to control training in line bisection, BIT and spatial bias in cancellation. VFT also produced improvements on activities of daily living. We conclude that VFT is a feasible, effective, home-based rehabilitation method for neglect patients that warrants further investigation with well-designed randomised controlled trials on a large sample of patients.


Assuntos
Atenção/fisiologia , Retroalimentação Sensorial/fisiologia , Transtornos da Percepção/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/complicações , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Percepção/etiologia , Percepção Espacial/fisiologia , Resultado do Tratamento
12.
PLoS One ; 13(10): e0205269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278070

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0138379.].

13.
PLoS One ; 13(9): e0203549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188952

RESUMO

Young adults demonstrate a small, but consistent, asymmetry of spatial attention favouring the left side of space ("pseudoneglect") in laboratory-based tests of perception. Conversely, in more naturalistic environments, behavioural errors towards the right side of space are often observed. In the older population, spatial attention asymmetries are generally diminished, or even reversed to favour the right side of space, but much of this evidence has been gained from lab-based and/or psychophysical testing. In this study we assessed whether spatial biases can be elicited during a simulated driving task, and secondly whether these biases also shift with age, in line with standard lab-based measures. Data from 77 right-handed adults with full UK driving licences (i.e. prior experience of left-lane driving) were analysed: 38 young (mean age = 21.53) and 39 older adults (mean age = 70.38). Each participant undertook 3 tests of visuospatial attention: the landmark task, line bisection task, and a simulated lane-keeping task. We found leftward biases in young adults for the landmark and line bisection tasks, indicative of pseudoneglect, and a mean lane position towards the right of centre. In young adults the leftward landmark task biases were negatively correlated with rightward lane-keeping biases, hinting that a common property of the spatial attention networks may have influenced both tasks. As predicted, older adults showed no group-level spatial asymmetry on the landmark nor the line bisection task, but they maintained a mean rightward lane position, similar to young adults. The 3 tasks were not inter-correlated in the older group. These results suggest that spatial biases in older adults may be elicited more effectively in experiments involving complex behaviour rather than abstract, lab-based measures. More broadly, these results confirm that lateral biases of spatial attention are linked to driving behaviour, and this could prove informative in the development of future vehicle safety and driving technology.


Assuntos
Condução de Veículo/estatística & dados numéricos , Lateralidade Funcional/fisiologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
14.
Front Neurosci ; 11: 664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249932

RESUMO

Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field.

15.
Neuroimage ; 153: 139-151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343987

RESUMO

A group-level visuospatial attention bias towards the left side of space (pseudoneglect) is consistently observed in young adults, which is likely to be a consequence of right parieto-occipital dominance for spatial attention. Conversely, healthy older adults demonstrate a rightward shift of this behavioural bias, hinting that an age-related reduction of lateralised neural activity may occur within visuospatial attention networks. We compared young (aged 18-25) and older (aged 60-80) adults on a computerised line bisection (landmark) task whilst recording event-related potentials (ERPs). Full-scalp cluster mass permutation tests identified a larger right parieto-occipital response for long lines compared to short in young adults (confirming Benwell et al., 2014a) which was not present in the older group. To specifically investigate age-related differences in hemispheric lateralisation, cluster mass permutation tests were then performed on a lateralised EEG dataset (RH-LH electrodes). A period of right lateralisation was identified in response to long lines in young adults, which was not present for short lines. No lateralised clusters were present for either long or short lines in older adults. Additionally, a reduced P300 component amplitude was observed for older adults relative to young. We therefore report here, for the first time, an age-related and stimulus-driven reduction of right hemispheric control of spatial attention in older adults. Future studies will need to determine whether this is representative of the normal aging process or an early indicator of neurodegeneration.


Assuntos
Envelhecimento , Atenção/fisiologia , Lateralidade Funcional , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Processamento Espacial , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Potenciais Evocados P300 , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Acuidade Visual , Percepção Visual/fisiologia , Adulto Jovem
16.
PLoS One ; 10(9): e0138379, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378925

RESUMO

Healthy young adults display a leftward asymmetry of spatial attention ("pseudoneglect") that has been measured with a wide range of different tasks. Yet at present there is a lack of systematic evidence that the tasks commonly used in research today are i) stable measures over time and ii) provide similar measures of spatial bias. Fifty right-handed young adults were tested on five tasks (manual line bisection, landmark, greyscales, gratingscales and lateralised visual detection) on two different days. All five tasks were found to be stable measures of bias over the two testing sessions, indicating that each is a reliable measure in itself. Surprisingly, no strongly significant inter-task correlations were found. However, principal component analysis revealed left-right asymmetries to be subdivided in 4 main components, namely asymmetries in size judgements (manual line bisection and landmark), luminance judgements (greyscales), stimulus detection (lateralised visual detection) and judgements of global/local features (manual line bisection and grating scales). The results align with recent research on hemispatial neglect which conceptualises the condition as multi-component rather than a single pathological deficit of spatial attention. We conclude that spatial biases in judgment of visual stimulus features in healthy adults (e.g., pseudoneglect) is also a multi-component phenomenon that may be captured by variations in task demands which engage task-dependent patterns of activation within the attention network.


Assuntos
Atenção/fisiologia , Transtornos da Percepção/fisiopatologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Formação de Conceito/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Julgamento/fisiologia , Masculino , Estimulação Luminosa/métodos , Reprodutibilidade dos Testes , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
17.
Cortex ; 69: 152-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073146

RESUMO

Transcranial direct current stimulation (tDCS) is a well-established technique for non-invasive brain stimulation (NIBS). However, the technique suffers from a high variability in outcome, some of which is likely explained by the state of the brain at tDCS-delivery but for which explanatory, mechanistic models are lacking. Here, we tested the effects of bi-parietal tDCS on perceptual line bisection as a function of tDCS current strength (1 mA vs 2 mA) and individual baseline discrimination sensitivity (a measure associated with intrinsic uncertainty/signal-to-noise balance). Our main findings were threefold. We replicated a previous finding (Giglia et al., 2011) of a rightward shift in subjective midpoint after Left anode/Right cathode tDCS over parietal cortex (sham-controlled). We found this effect to be weak over our entire sample (n = 38), but to be substantial in a subset of participants when they were split according to tDCS-intensity and baseline performance. This was due to a complex, nonlinear interaction between these two factors. Our data lend further support to the notion of state-dependency in NIBS which suggests outcome to depend on the endogenous balance between task-informative 'signal' and task-uninformative 'noise' at baseline. The results highlight the strong influence of individual differences and variations in experimental parameters on tDCS outcome, and the importance of fostering knowledge on the factors influencing tDCS outcome across cognitive domains.


Assuntos
Lateralidade Funcional/fisiologia , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
18.
Neuropsychologia ; 74: 108-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25637226

RESUMO

Young adults typically display a processing advantage towards the left side of space ("pseudoneglect"), possibly as a result of right parietal dominance for spatial attention. This bias is ameliorated with age, with older adults displaying either no strongly lateralised bias, or a slight bias towards the right. This may represent an age-related reduction of right hemispheric dominance and/or increased left hemispheric involvement. Here, we applied anodal transcranial direct current stimulation (atDCS) to the right posterior parietal cortex (PPC; R-atDCS), the left PPC (L-atDCS) and a Sham protocol in young and older adults during a titrated lateralised visual detection task. We aimed to facilitate visual detection sensitivity in the contralateral visual field with both R-atDCS and L-atDCS relative to Sham. We found no differences in the effects of stimulation between young and older adults. Instead the effects of atDCS were state-dependent (i.e. related to task performance at baseline). Relative to Sham, poor task performers were impaired in both visual fields by anodal stimulation of the left posterior parietal cortex (PPC). Conversely, good performers maintained sensitivity in both visual fields in response to R-atDCS, although this effect was small. We highlight the importance of considering baseline task ability when designing tDCS experiments, particularly in older adults.


Assuntos
Envelhecimento , Atenção/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Idoso , Análise de Variância , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
19.
Neuropsychologia ; 51(13): 2747-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076376

RESUMO

Asymmetry in human spatial attention has long been documented. In the general population the majority of individuals tend to misbisect horizontal lines to the left of veridical centre. Nonetheless in virtually all previously reported studies on healthy participants, there have been subsets of people displaying rightward biases. In this study, we report differential time-on task effects depending on participants' initial pseudoneglect bias: participants with an initial left bias in a landmark task (in which they had to judge whether a transection mark appeared closer to the right or left end of a line) showed a significant rightward shift over the course of the experimental session, whereas participants with an initial right bias shifted leftwards. We argue that these differences in initial biases as well as the differential shifts with time-on task reflect genuine observer subtypes displaying diverging behavioural patterns. These observer subtypes could be driven by differences in brain organisation and/or lateralisation such as varying anatomical pathway asymmetries (Thiebaut de Schotten et al., 2011).


Assuntos
Atenção/fisiologia , Viés , Lateralidade Funcional/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Psicometria , Sono/fisiologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...